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Abstract. We present results of a numerical study of phase separation dynamics of a two-dimensional
quenched system which has a small-world topology, both with and without the conserved order parameter.
We examine how the domain coarsening changes with the density of long-range connections (shortcuts).
It is demonstrated that the shortcuts have directly opposite effects, i.e., a speeding up of the coarsening
process of reaching a fully uniform state, and a freezing of the system in a disordered metastable state.

PACS. 89.75.Fb Structures and organization in complex systems – 47.54.-r Pattern selection; pattern
formation – 64.60.Cn Order-disorder transformations; statistical mechanics of model systems

1 Introduction

When a system is quenched from high temperature to
zero temperature, the system develops order from disor-
der through domain growth and coarsening (phase sepa-
ration). For systems with homogeneous structures such as
pure binary fluids and alloys, it is well established [1] that
at late stages of this phase-ordering dynamics, the system
is characterized by a single dynamic length scale �(t) that
grows with time as a power law, �(t) ∼ tα. For inhomo-
geneous systems our understanding of phase separation
kinetics is poorer at a much preliminary level, although
such systems abound in nature spanning many disciplines
in science from physics and chemistry to biology.

In this connection, a recent surge of interest in complex
networks is noteworthy (see reviews [2–5]). The notion of
a network can describe any system whose constituent enti-
ties (referred to as node or vertex of the network) interact
with each other. Each interaction between nodes results
in a link (edge) between them. Typical features shared by
many complex networks are the small-world property [6]
and the scale-free structure [7]. The scale-free structure
refers to the absence of a characteristic scale in the dis-
tribution of the number of links of a node, giving rise to
a large connectivity heterogeneity. The small-world effect
refers to a high degree of clustering of nodes as well as the
small number of links in shortest paths between nodes.

The small-world (SW) property is usually exhibited
by complex systems which have a regular topology mod-
ified by an increasing density of random long-range con-
nections [6,8,9]. The question we address in this paper
is how such SW network structure controls the phase-
ordering processes taking place on the network. Specifi-
cally we study the effect of long-range links in the SW
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network on the phase separation. It turns out that the
SW topologies give rise to a nonequilibrium transition be-
tween an inhomogeneous phase of coexisting regions with
different values of the order parameter (ψ) and a phase
with all the system sharing a common value of ψ.

The SW network we consider in this work is con-
structed as follows [9]. We start with a two-dimensional
square lattice. We then add shortcuts between pairs of ver-
tices chosen uniformly at random but we do not remove
any bonds from the regular lattice. More than one bond
between any two vertices as well as any bond connecting a
vertex to itself are prohibited. In particular, we add with
probability p one shortcut for each bond on the original
lattice, so that an average coordination number z is given
by z = 4(1 + p).

On this SW network, evolution of the order parameter
ψi to be defined at each vertex site i is described by the
zero-noise Langevin equation [10]

∂ψi

∂t
= −L(∇2)[−rψi + uψ3

i −D∇2ψi]. (1)

Here L(∇2) is a constant Γ0 for a nonconserved order
parameter (NCOP, or model A), while L(∇2) = −M∇2

for the conserved order parameter (COP, or model B); in
the following we set Γ0 = M = 1 in appropriate units.
The positive constants r, u and D are phenomenological
parameters. The diffusive coupling is represented by the
Laplacian operator, which is fully characterized by the ad-
jacency matrix aij , taking the value aij = 1 if the vertices
i and j are connected by an edge, whereas aij = 0 other-
wise. Namely, for any quantity Xi on the vertex i of the
network

∇2Xi =
∑

j

(aij − kiδij)Xj , (2)
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where ki is the degree of the vertex i, ki =
∑

j aij . Here
and hereafter we have set the lattice spacing �x of the
square lattice to unity, �x = 1. In passing we remark that
a matrix Dij ≡ aij − kiδij in equation (2) is a diffusion
matrix defined on the underlying discrete network and is
a conservative operator [11].

In the next section, we describe different pattern plan-
forms expected from the mean-field treatment of equa-
tion (1). Results of detailed simulations are presented
in Section 3. The final section contains a summary and
discussion of the results.

2 Possible morphologies

In the mean-field approximation to the evolution equa-
tion (1), random long-range links are replaced with their
expected number, i.e., each site is linked to all others via
a shortcut of strength 4p/N , where N is the total number
of vertices in the network. Hence

∇2ψi = (∇2)nnψi + 4p(ψ̄ − ψi), (3)

where (∇2)nn is the Laplacian on the original regular lat-
tice, and ψ̄ = (1/N)

∑
j ψj . With ψ ≡ ψi and ∇2 ≡

(∇2)nn for simplicity, equation (1) reduces to

∂ψ

∂t
= (r − 4pD)ψ − uψ3 +D∇2ψ + 4pDψ̄ (4)

for NCOP, and

∂ψ

∂t
= ∇2(−r̃ψ + uψ3 −D∇2ψ) −B(ψ − ψ̄)

−C(ψ3 − ψ3) (5)

for COP with

r̃ ≡ r − 8pD, B ≡ 4p(4pD − r), C ≡ 4pu, (6)

and ψ3 ≡ (1/N)
∑

j ψ
3. Notice in equation (5) that when

shortcuts are present, one obtains the nongradient cubic
coupling (∝ C). In contrast, in the NCOP case we have
the gradient dynamics (4) with the Lyapunov (effective
free energy) functional

F =
1
2

∫
dr

{
(4pD − r)ψ2(r) +D

(
∇ψ(r)

)2
+
u

2
ψ4(r)

−4pD
V

∫
dr′ψ(r′)ψ(r)

}
, (7)

where V is the volume of the system.
It is then easy to show that in systems with NCOP a

uniform state (in which ψ = ψ∗ ≡
√
r/u or ψ = −ψ∗) is

always selected when p �= 0. In the case p = 0, one recovers
the usual situation where, depending on the degree of off-
criticality, either the uniform phase or the inhomogeneous
phase with two degenerate states ψ = ±ψ∗ coexisting is
realized.

In the COP case, the linear stability analysis of equa-
tion (5) yields the following consequences:

– for r > rc ≡ 4pD + 3uψ̄ 2, one obtains the inho-
mogeneous phase in which two homogeneous states
ψ = ±ψ0 coexist, where ψ0 ≡

√
(r − 4pD)/u. We re-

mark that the morphology in this case depends on ψ̄.
For the critical quench (ψ̄ = 0), there is symmetry
between the two competing states resulting in convo-
luted percolating patterns. When the system moves
off-critical, this symmetry is broken and droplet pat-
tern may appear;

– for r ≤ rc, the uniform state with ψ = ψ̄ is stable.

3 Numerical results

We have performed simulations based on equation (1). In
order to allow efficient exploration of the long-time regime
of phase-ordering kinetics, we follow the spirit of the cell-
dynamical-system (CDS) method [12]. A two-dimensional
space is divided into 256 × 256 square cells with periodic
boundary conditions. For equation (1) we solve the follow-
ing CDS model of the order parameter ψ(n, t) associated
with a lattice site labeled by n at time t:

ψ(n, t+ 1) =

⎧
⎪⎨

⎪⎩

F
{
ψ(n, t)

}
for NCOP

ψ(n, t) −∇2
[
F{ψ(n, t)} − ψ(n, t)

]

for COP
(8)

with

F{ψ(n, t)} ≡ A tanhψ(n, t) +D∇2ψ(n, t). (9)

The Laplacian is evaluated as given in equation (2). In the
following we present first our numerical results of NCOP
and then the results of COP.

3.1 NCOP

For the NCOP, we have fixed the parameters as A = 1.2
and D = 0.1 with varying values of the connection prob-
ability p. For a given p, we have numerically integrated
equation (8) with the initial configurations of ψ(n, t) at
each site n randomly chosen to have the values δψ ± a,
where a = 0.01 with different choices of δψ. The a repre-
sents fluctuations in the initial state and δψ is a measure of
how far off-critical the system is placed at t = 0 (hence the
particular case δψ = 0 corresponds to a critical quench).
We measured the time-dependent magnitude of the mean
order parameter ψ̄(t). The average magnitude 〈|ψ̄(t)|〉 was
then calculated as an average over five realizations of dif-
ferent networks at each value of p.

We have found that the behavior of time evolution of
〈|ψ̄(t)|〉 changes substantially with δψ. Namely, if δψ/a �
0.2, the system equilibrates over a rather short time scale
to a homogeneous state (Fig. 1). On the other hand, in
the range δψ/a < 0.2, 〈|ψ̄(t)|〉 has a power-law growth

〈|ψ̄(t)|〉 ∼ tα (10)
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Fig. 1. Temporal evolution of the normalized 〈|ψ̄(t)|〉 for the
off-critical quench with δψ = 0.005. The ψ∗ is the equilibrium
value of ψ. The results for five distinct connection probabilities
are shown. The solid curve is a mean-field theoretical result:

〈|ψ̄(t)|〉/ψ∗ =
{
1 − [

1 − (ψ∗/δψ)2
]
exp(−2Bψ∗2

t)
}−1/2

,

which is obtained from equation (4). The B is the fitting pa-
rameter to account for the different units of space and time of
CDS dynamics.

before the system reaches the final equilibrium homoge-
neous state. To illustrate this, we give in Figure 2a a
plot of 〈|ψ̄(t)|〉 against t for varying connection proba-
bilities p at δψ/a = 0.02. Notice that when the value of
p is increased, the time interval over which the power-law
growth is observed shrinks with the concurrent increase of
the growth exponent α. Figure 2b demonstrates that the
growth exponent varies as α ∝ p. These features should
be compared with the radically different behavior given in
Figure 1, where numerical data for different p’s superpose
well over the entire time domain.

An important remark is in place here before proceeding
to results for the COP case. In our simulations of critical
quenches for small p 
 1, we have encountered several
runs in which metastable states persist and the system
gets stuck in these states without reaching the equilib-
rium homogeneous state. A typical snapshot of this frozen
state is shown in Figure 3b as compared with the ordinary
nonfreezing case (Fig. 3a).

One might argue that such frozen states are possibly
due to a finite-size effect of the system, and expect that
the probability for such states to exist approaches zero
in the thermodynamic limit. To test this, we measured
the probability PF (L) to reach a frozen configuration on
L × L SW lattices in the case p = 0.05 as a function of
L for L ≤ 500. Our result shown in Figure 4 apparently
fails to meet the expectation, and suggests that PF (L)
approaches a nonzero value as L → ∞. Nonetheless, the
possibility that the observed frozen configuration could
be a long-lived transient is certainly worth investigating
further.

In this connection we point out that in the kinet-
ics of ordering in two-dimensional zero-temperature Ising
model of order-disorder transitions, a nonzero probabil-
ity of reaching frozen metastable states has been re-
ported [13]. It should be stressed, however, that the frozen

Fig. 2. (a) Temporal evolution of 〈|ψ̄(t)|〉/ψ∗ for δψ = 0.0002
and various values of p. (b) Growth exponent α as a function
of p. The solid line is best fit to the data.

Fig. 3. Pattern evolution in the critical quench of NCOP for
p = 0.05, leading to either (a) a homogeneous state or (b) a
frozen state. The white region represents positive values of the
order parameter ψ and the black one negative ψ. The numbers
denote the necessary time steps from the same initial condition.

configuration found in the cited studies is domains of a
slablike shape, in contrast to the interconnected structure
(Fig. 3b) observed in our simulations. This is because the
curvature provides a driving force for the domain growth
in the Ising dynamics, so that a very small curvature of
the strip geometry is the cause leading to formation of
the pinned metastable state. The physical situation in
our SW media is quite different. The disordered environ-
ment created by random long-range connections tends to
distort the otherwise circular domains (that are formed
in the late stage of phase separation) in such a way to
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Fig. 4. Probability PF (L) that an L × L SW system for
p = 0.05 eventually reaches a frozen state in critical quenches.
Each data point (with error bars) is based on the average over
200 realizations of different networks for L = 100, 200 and 100
realizations for L ≥ 300.

occupy as many favorable pinning sites as possible. It thus
gives rise to a complex energy landscape which consists of
many different configurations that are locally stable. Such
a structure is in fact found in our frozen configurations,
as demonstrated in Figure 5.

The metastable configurations which lead to the ar-
rested state should be depinned by random noise. This is
demonstrated in Figure 6. It is seen that adding random
noise can bring the system out of these metastable states
to resume the domain growth.

3.2 COP

We have performed simulations using the COP equa-
tion (8) on a 256×256 SW lattice with periodic boundary
conditions. Throughout this section, the parameter values
we use are A = 1.016, D = 0.008, and the initial configu-
ration is always with order parameter values of amplitudes
ψ = δψ±0.1 uniformly and randomly distributed; in crit-
ical quenches δψ = 0, while for off-critical quenches we
use δψ = 0.08 (other runs using different values of δψ
were done with consistent results). Figures 7 and 8 show
a typical pattern evolution for the critical and the off-
critical case, respectively. In accord with the mean-field
theory, the asymptotic domain morphology changes from
an inhomogeneous state with two-phase coexistence to a
homogeneous state by the increase of shortcut density.
What the mean-field theory fails to predict, however, is
that in the simulations the system always becomes pinned
at metastable states in the SW regime (Figs. 7c and 8c).
We thus looked at the frozen dynamic behavior, and found
that the formation of regions trapped in the metastable
states can be traced to the nodes with long-range con-
nections. This feature is already described in the previous
section, and we shall not repeat the similar analysis here.

In order to make a quantitative analysis of the do-
main growth, we measured the circularly averaged struc-
ture function S(k, t) defined by

S(k, t) = 〈φ̃(k, t)φ̃∗(k, t)〉. (11)

Here φ̃(k, t) is the Fourier transform of the order-param-
eter fluctuation field φ: φ(r, t) = ψ(r, t) − 〈ψ(r, t)〉 with
the angular brackets denoting statistical averaging. The
angular brackets in the above (11) refer to an average
over the orientation of the wave vector k as well as an
ensemble average; each run is repeated with five different
realizations of the network topology to average over. To
remove any effect due to the finiteness of the ratio of the
thickness of domain walls to the domain size, we calculated
S(k, t) after the data were hardened using the transforma-
tion ψ(r) → sgn[ψ(r)]. As a measure of the length scale
in the description of phase separation kinetics, we use

�(t) ≡ 2π〈k〉−1(t), (12)

where 〈k〉(t) is the first moment of S(k, t).
A plot of the characteristic length scale �(t) thus ob-

tained against t is given in Figure 9 for the critical quench.
Note that, in the time regime where the power-law behav-
ior is observed, the growth dynamics speed up by adding
shortcuts. For p > 0.1, phase separation eventually comes
to an end at late times. In this case we also note that
by adding more shortcuts, �(t) comes to arrest at smaller
values of time steps.

We have carried out the same analysis for simulations
of off-critical quenches. Apart from the fact that the mi-
nority phase forms compact structures, the qualitative fea-
tures of domain coarsening were essentially the same as
those for critical quenches.

One of the most important results that have been ob-
tained for the dynamics of phase separation in systems
with a regular topology (i.e., systems without any long-
range connection) is the following. Namely, due to the
existence of only one length scale, denoted here by �(t)
again, the late time evolution of the structure function
can be described in terms of scaling with �(t):

S(k, t) = �(t)2T
(
k�(t)

)
(13)

in two dimensions, where T (x) is the time-independent
function called scaling function [1]. We thus ask whether
the dynamic scaling (13) is satisfied when one introduces
the long-range connections into the regular topology. In
order to answer this question, we plot in Figure 10 the
scaled structure function S(k, t)/�2(t) as a function of the
scaled wavenumber k�(t) for critical quenches at p = 0 and
p = 0.01 for which the asymptotic behavior of �(t) is ob-
served to obey the power law. Within the accuracy of the
data 1, the data points for different times lie on a smooth

1 The peak position of S(k, t) at late stages of coarsening
moves toward a small-k value as p increases. Since S(k, t) does
not have the self-averaging property for small-k values, we
could not get a reliable shape of S(k, t) near k = 0 in our
simulations. To improve statistics in this wavenumber region,
substantially larger systems need to be studied, which is be-
yond our scope here. Incidentally, in the NCOP case for which
S(k, t) is always peaked at k = 0, the poor statistics at small
k region is even more appreciable at nonzero p. We therefore
monitored the quantity in equation (10) rather than the stan-
dard �(t).
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Fig. 5. Left column: grey-scale image of the order parameter field ψ in the frozen asymptotic configuration. The grey levels
used for the values of ψ are displayed on the right. The dashed curve represents the domain interface (ψ = 0). A 25×25 portion
of the 256× 256 lattice result for p = 0.05 at t = 105 is exhibited. The circle represents the node which is connected to an other
node by a long-range connection (shortcut), while the triangle represents the node connected to two other nodes by shortcuts.
Notice that most of the bulk region has reached a configuration in which ψ � ±ψ∗, ψ∗ being the equilibrium value of ψ (cf.
right column). At positions where nodes having long-range connections are located, the ψ remains pinned at some constant
value, ψ � ±ψF . Right column: the normalized one-point distribution function ρ(ψ) ≡ V −1

∫
drδ(ψ−ψ(r)) in this frozen state.

In either positive or negative ψ region, two largest peaks correspond to the equilibrated state (ψ � ±ψ∗) in the bulk, and the
third peak (at ψ = ±ψF ) is caused by the above mentioned arrest at circled or triangled nodes.

Fig. 6. Depinning of the frozen pattern by noise. At the time
step t = 19952 at which the frozen configuration depicted in
Figure 3b was obtained, we turned on the noise; the noises
of amplitude in the range [−0.12, 0, 12] were uniformly and
randomly distributed. After 5166 iterations we turned off the
noise. The final state that is reached in this experiment is the
homogeneous state with ψ = ψ∗ (cf. Fig. 5).

master curve and the scaling ansatz (13) seems to be well
satisfied. (We remark, however, that very long times can-
not be fitted to the same master curve2.) Nonetheless,
on the basis of these plots, it is unlikely that the scaling
function remains universal for different connection proba-
bilities.

4 Summary and discussion

We have studied the dynamics of phase separation in sys-
tems with the small-world topology through simulations
of the Langevin equations. Systems with both conserved
and nonconserved order parameters are considered.

We found that there exists a strong correlation be-
tween the growth kinetics and the probability p of adding

2 A similar behavior of the scaled structure function has been
noted in model-B simulations on a regular lattice [14].

Fig. 7. Pattern evolution in the critical quench: (a) p = 0,
(b) p = 0.01, (c) p = 0.1, and (d) p = 0.9. The numbers
denote necessary time steps from the same initial condition.
In (a)–(c) the white regions represent positive values of the
order parameter ψ and the black ones negative ψ. In (d) the
white regions correspond to |ψ| ≤ 0.01, while the black ones
to |ψ| > 0.01. For large values of p as in (d), the homogeneous
state ψ = 0 is quickly achieved in a short time.

random long-range shortcuts on each local link of the origi-
nal regular lattice. For conserved systems, the ordering dy-
namics is facilitated by the long-range connections in the
so-called small-world limit, p
 1, in which the high clus-
tering3 among nodes are still present like regular lattices.

3 For the SW square lattice, the standard clustering coeffi-
cient (denoted by C) is identically zero [15]. However, this is
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Fig. 8. Pattern evolution in the off-critical quench: (a) p = 0,
(b) p = 0.01, (c) p = 0.1, and (d) p = 0.9. The numbers
denote necessary time steps from the same initial condition. In
(a)–(c) the white regions represent positive values of the order
parameter ψ and the black ones negative ψ. In (d) the white
regions correspond to ψ ≥ 0.99 × δψ, while the black ones to
ψ < 0.99 × δψ. In qualitative agreement with the mean-field
prediction, for large values of p as in (d), the homogeneous
state ψ = δψ is quickly achieved in a short time.
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Fig. 9. Time dependence of the characteristic length �(t) in
critical quenches at various shortcut probabilities p. The solid
line is best fit to the p = 0 data at late times, which has
a slope=0.32 showing the standard t1/3 growth [1]. Apparent
saturation in the case of p = 0.01 is due to finite-size effects as
�(t) ∼ L/2 at t ∼ 105, L being the linear size of the system.

Here a power-law growth of the domain size is observed.
However, at larger values of p as long as the small-world
effects are present, the coarsening gets trapped in partially
ordered metastable states. As p is raised further into the
random-lattice regime where short and long range con-
nections are equally likely, the system achieves the uni-
form state in a very short time. These results are insensi-
tive to the initial conditions, i.e., independent of whether
the initial state is completely random and symmetric or

due to the misleading artifact of the coefficient C and in fact
the square lattice has a generic nonzero clustering characteris-
tic [16,17].

corresponds to an off-critical quench with asymmetric ran-
dom initial conditions.

For nonconserved systems, the uniform state is always
the equilibrium state for any p �= 0. The ordering dy-
namics is different, however, depending on the degree of
off-criticality of initial conditions. For weakly off-critical
quenches (including the symmetric initial conditions), the
convergence towards the completely uniform state is of
power-law, and the growth exponent increases with p. On
the other hand, strong off-criticalities lead to immediate
equilibration and the time to achieve this is independent
of p. In the case of critical quench, not all realizations
of dynamics end up in the uniform state and freezing to
a metastable state is found. Our simulations suggest a
nonzero value of the probability to enter the metastable
state in the limit as N → ∞. We stress that the frozen
ordering kinetics cannot be qualitatively accounted for by
the mean field theory as given in this paper4. As with other
disordered systems, devising a formalism able to describe
the formation of metastable states remains a theoretical
challenge yet to be done.

In connection with the pinning of phase separation pro-
cesses presented in the present paper, we mention several
studies that have observed the similar behavior in other
ordering processes on SW lattices. The zero-temperature
Glauber dynamics for Ising spins placed on SW networks
has been investigated in [19]. The physical arguments are
given that frozen metastable states are induced by short-
cuts whenever domains attain a characteristic size which
scales with some power of 1/p as p−n 5. It is also claimed
that this is confirmed by numerical simulations. These re-
sults are at variance with our findings. For coarsening
systems without disordered topology, it is generally ac-
cepted that the Ising model with Glauber dynamics and
the model A belong to the same universality class. Con-
sequently, further work needs to be done to resolve this
issue, perhaps by numerically studying a much larger sys-
tem.

Phenomenologically related to the coarsening pro-
cesses of Ising model is the consensus formation of the
voter model [20]. The voter model considers a system with
N nodes which represent N voters that have two opinions
denoted by +1 and −1. Opinion formation of the nodes
evolves according to the following updating rule. At each
time step, one node is chosen randomly, and is given the
opinion value of one of its neighbors that is also chosen at
random. The final opinion outcome can then be either a
consensus of +1 or that of −1. The numerical study [21]
of the voter model on SW networks found that the full

4 Nontrivial behaviors on complex networks for which the
mean field description is inappropriate have previously been
found in [18]

5 In reference [19] the exponent n is determined to be n =
2/3. For our COP systems, by contrast, we find from Figure 9
that the domain size �(∞) at which growth stops scales as
�(∞) ∼ p−1/3. As such, both results differ from the charac-
teristic lengthscale ξsc for shortest paths (the mean separation
between shortcut-ends), which scales as ξsc ∼ p−1/2 in two-
dimensional SW [9].
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Fig. 10. Scaled structure function S(k, t) with �(t) given by equation (12) as the scaling length for critical quenches for p = 0
(left) and p = 0.01 (right).

consensus is reached provided N is finite. Furthermore,
such a complete order is reached in a shorter time than
on regular lattices. However, in the thermodynamic limit
(N → ∞), the system does not display the complete order.

We should note here that the ordering dynamics in the
voter model differs from the Glauber Ising model; in the
latter, the evolution is driven by surface tension of do-
mains, whereas in the former model the evolution is based
on each voter freely adopting a new state in response to
the opinions in his/her connected neighbors. Therefore,
a version of voter model put forward by Krapivsky and
Redner [22] is more relevant to our work here. The model
obeys a local majority updating rule, and the opinion state
evolves as follows. At each time step, one node is chosen
randomly from the underlying network. The chosen node
and its connected neighbors are considered as a group,
and all the nodes in the group adopt the state of the lo-
cal majority. Numerical treatment of this model has been
presented in [23]. It is found that the time for reaching
full consensus is significantly shortened by the addition of
shortcuts. This result is consistent with our results given
in Section 3.1, although it is not clear whether the local
majority model displays the complete order even in the
thermodynamic limit.

To understand the role of underlying heterogeneity in
phase separation dynamics, we have confined ourselves to
the small-world effects. In real network structures, how-
ever, there is another generic feature that is missing from
the present analysis. These networks have a highly in-
homogeneous structure reflected in their fat-tailed degree
distribution P (k) which follows a power law P (k) ∼ k−γ ,
thus being designated as scale-free networks. Therefore
it would be interesting to study how the coarsening dy-
namics changes in that case, and we plan to present such
analysis elsewhere.
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